Scientific articles
1. Korzeniewski B, Froncisz W (1989) A dynamic model of oxidative phosphorylation. Studia Biophysica 132, 173-187.
2. Korzeniewski B, Froncisz W (1991) An extended model of oxidative phosphorylation. Biochim Biophys Acta 1060, 210-223.
3. Korzeniewski B, Froncisz W (1992) Theoretocal studies on the control of the oxidative phosphorylation system. Biochim Biophys Acta 1102, 67-75.
4. Korzeniewski B, Froncisz W (1993) Thermodynamic response paradigm and its application to oxidative phosphorylation. In: Modern trends in biothermokinetics (Schuster S, Rigoulet M, Ouhabi R and Mazat J-P eds.), Plenum Press, New York, 33-38.
5. Korzeniewski B (1994) Is a mathematical model able to predict the result of a biochemical experiment? Acta Biochim Polon 41, 214-215.
6. Korzeniewski B, Harper M-E, Brand M (1995) Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or by vasopressin. Biochim Biophys Acta 1229, 315-322.
7. Korzeniewski B (1996) Simulation of oxidative phosphorylation in hepatocytes. Biophys Chem 58, 215-224.
8. Korzeniewski B (1996) Simulation of state 4 - state 3 transition in isolated mitochondria. Biophys Chem 57, 143-153.
9. Korzeniewski B (1996) Regulation of cytochrome oxidase - theoretical studies. Biophys Chem 59, 75-86.
10. Korzeniewski B, Mazat J-P (1996) Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies. Biochem J 319, 143-148.
11. Korzeniewski B (1996) What regulates respiration in mitochondria? Biochem Molec Biol Internat 39, 415-419.
12. Korzeniewski B, Mazat J-P (1996) Theoretical studies on control of oxidative phosphorylation in muscle mitochondria at different energy demands and oxygen concentrations. Acta Biotheoretica 44, 263-269.
13. Korzeniewski B (1996) Which parameter regulates respiration in mitochondria in response to varying energy demand? In: Biothermokinetics of the living cell (Westerhoff HV, Snoep JL, Wijker JE, Sluse FE and Kholodenko BN, eds.), Biothermokinetics Press, Amsterdam, 41-46.
14. Korzeniewski B, Quant PA (1997) A simple mechanism decreasing free metabolite pool size in static spatiol channelling. Mol Cell Biochem 169, 135-142.
15. Korzeniewski B (1997) Thermodynamic regulation of cytochrome oxidase. Mol Cell Biochem 174, 137-141.
16. Mazat J-P, Lettelier T, Bedes F, Malgat M, Korzeniewski B, Jouaville LS, Morkuniene R (1997) Metabolic control analysis and threshold effect in oxidative phosphorylation: Implications for mitochondrial pathologies. Mol Cell Biochem 174, 143-148.
17. Korzeniewski B (1998) Is it possible to predict any properties of oxidative phosphorylation in a theoretical way? Mol Cell Biochem 184, 345-358.
18. Korzeniewski B (1998) Regulation of ATP supply during muscle contraction: theoretical studies. Biochem J 330, 1189-1195.
19. Mazat J-P, Letellier T, Malgat M, Rossignol R, Korzeniewski B, Demaurge F, Leroux J-P (1998) Inborn errors of metabolism in the light of metabolic control analysis, Biochem Soc Transactions 26, 141-145.
20. Gellerich FN, Laterveer FE, Korzeniewski B, Zierz S, Nicolay K (1998) Dextran stromgly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria. Eur J Biochem 254, 172-180.
21. Korzeniewski B, Brown GC (1998) Quantification of the relative contribution of parallel pathways to signal transfer: application to cellular energy transduction. Biophys Chem 75, 73-80.
22. Korzeniewski B (1999) Theoretical studies on how ATP supply meets ATP demand. Biochem Soc Transactions 27, 271-276.
23. Korzeniewski B (2000) Regulation of ATP supply in mammalian skeletal muscle during resting state intensive work transition. Biophys Chem 83, 19-34.
24. Korzeniewski B (2000) Regulation of ATP supply in muscle: implications for importance of flux control coefficients and for the genesis of mitochondrial myopathies. In: Technological and medical implications of Metabolic Control Analysis (Cornish-Bowden AJ, Cardenas ML, eds.), Kluver Academic Publishers, Netherlands, 125-130.
25. Korzeniewski B (2001) Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochim Biophys Acta 1504, 31-45.
26. Korzeniewski B, Malgat M, Letellier T, Mazat J-P (2001) Effect of 'binary mitochondrial heteroplasmy' on respiration and ATP synthesis: implications for mitochondrial diseases. Biochem J 357, 835-842.
27. Korzeniewski B (2001) Cybernetic formulation of the definition of life. J Theor Biol 209, 275-286.
28. Zoladz JA, Korzeniewski B (2001) Physiological background of the change point in VO2 and the slow component of oxygen uptake kinetics. J Physiol Pharmacol 52, 167-184.
29. Korzeniewski B, Zoladz JA (2001) A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys Chem 92, 17-34.
30. Korzeniewski B (2002) Parallel activation in the ATP supply-demand system lessens the impact of inborn enzyme deficiencies, inhibitors, poisons or substrate shortage on oxidative phosphorylation in vivo. Biophys Chem 96, 21-31.
31. Korzeniewski B, Zoladz JA (2002) Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies. Biochem J 365, 249-258.
32. Korzeniewski B (2002) Effect of enzyme deficiencies on oxidative phosphorylation: from isolated mitochondria to intact tissues. Theoretical studies. Mol Biol Rep 29, 197-202.
33. Aimar-Beurton M, Korzeniewski B, Letellier T, Ludinard S, Mazat J-P, Nazaret C (2002) Virtual mitochondria: metabolic modelling and control. Mol Biol Rep 29, 227-232.
34. Zoladz JA, Duda K, Karasinski J, Majerczak J, Kolodziejski L, Korzeniewski B (2002) MYHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2/power output relationship in humans. J Physiol Pharmacol 53, 805-821.
35. Korzeniewski B (2003) Influence of substrate activation (hydrolysis of ATP by first steps of glycolysis and b-oxidation) on the effect of enzyme deficiencies, inhibitors, substrate shortage and energy demand on oxidative phosphorylation. Biophys Chem 104, 107-119.
36. Korzeniewski B, Zoladz JA (2003) Possible factors determining the non-linearity in the VO2-power output relationship in humans: theoretical studies. Japan J Physiol 53, 271-280.
37. Korzeniewski B, Zoladz JA (2003) Training-induced adaptation of oxidative phosphorylation in skeletal muscle. Biochem J 374, 37-40.
38. Korzeniewski B (2003) Regulation of oxidative phosphorylation in different muscles and various experimantal conditions. Biochem J 375, 799-804.
39. Korzeniewski B, Zoladz JA (2004) Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscle. Biochem J 379, 703-710.
40. Korzeniewski B, Liguzinski P (2004) Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Biophys Chem 110, 147-169.
41. Zoladz JA, Szkutnik Z, Duda K, Majerczak J, Korzeniewski B (2004) Preexercise metabolic alkalosis induced via bicarbonate ingestion accelerates VO2 kinetics at the onset of a high-power-output exercise in humans. J Appl Physiol 98, 895-904.
42. Korzeniewski B (2004) The modeling of oxidative phosphorylation in skeletal muscle. Jpn J Physiol 54, 511-516.
43. Korzeniewski B (2005) Confrontation of the cybernetic definition of a living individual with the real world. Acta Biotheor 53, 1-28.
44. Korzeniewski B, Zoladz JA (2005) Some factors determining the PCr recovery overshoot in skeletal muscle. Biophys Chem 116, 129-136.
45. Korzeniewski B, Noma A, Matsuoka S (2005) Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Biophys Chem 116, 145-157.
46. Korzeniewski B (2006) AMP deamination delays muscle acidification during heavy exercise and hypoxia. J Biol Chem 281, 3057-3066.
47. Korzeniewski B (2006) Oxygen consumption and metabolite concentrations during transitions between different work intensities in heart. Am J Physiol 291, H1466-474.
48. Liguzinski P, Korzeniewski B (2006) How to keep glycolytic metabolite concentrations constant when ATP/ADP and NADH/NAD+ change. IEE Proc Syst Biol 153, 332-334.
49. Korzeniewski B, Zoladz JA (2006) Biochemical background of the VO2 on-kinetics in skeletal muscles. J Physiol Sci 56, 1-12.
50. Liguzinski P, Korzeniewski B (2006) Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies. Am J Physiol 291, 1213-1224.
51. Zoladz JA, Korzeniewski B, Grassi B (2006) Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms. J Physiol Pharmacol 57, 67-84.
52. Liguzinski P, Korzeniewski B (2007) Oxygen delivery by blood determines the maximal VO2 and work rate during whole body exercise in humans: in silico studies. Am J Physiol 293, H343-H353.
53. Korzeniewski B (2007) Regulation of oxidative phosphorylation through parallel activation. Biophys Chem 129, 93-110.
54. Dzbek J, Korzeniewski B (2007) Control over action potential, calcium peak and average fluxes in the cyclic quasi-steady-state ion transport system in cardiac myocytes: in silico studies. Biochem J 404, 227-233.
55. Zoladz JA, Kulinowski P, Zapart-Bukowska J, Grandys M, Majerczak J, Korzeniewski B, Jasiński A (2007) Phosphorylation potential in the dominant leg is lower, and [ADPfree] is higher in calf muscle at rest in endurance athlets than in sprinters and in untrained subjects. J Physiol Pharmacol 58, 803-819.
56. Korzeniewski B, Deschodt-Arsac V, Calmettes G, Franconi J-M, Diolez P (2008) Physiological heart activation by adrenaline involves parallel activation of ATP usage and supply. Biochem J 413, 343-347.
57. Dzbek J, Korzeniewski B (2008) Control over the contribution of the mitochondrial membrane potential (DY) and proton gradient (DpH) to the protonmotive force (Dp): In silico studies. J Biol Chem 283, 33232-33239.
58. Korzeniewski B, Deschodt-Arsac V, Calmettes G, Gospillou G, Franconi J-M, Diolez P (2009) Effect of pyruvate, lactate and insulin on ATP supply and demand in unpaced perfused rat heart. Biochem J 423, 421-428.
59. Zoladz JA, Korzeniewski B (2009) The delay phase in the pulmonary VO2 kinetics has reliable physiological explanation. J Appl Physiol 107, 1672.
60. Zoladz JA, Korzeniewski B, Kulinowski P, Zapart-Bukowska J, Majerczak J, Jasiński A (2010) Phosphocreatine recovery overshoot after high intensity exercise in human skeletal muscle is associated with extensive muscle acidification and a significant decrease in phosphorylation potential. J Physiol Sci 60, 331-341.
61. Korzeniewski B (2011) Artificial cybernetic living individuals based on supramolecular-level organization as dispersed individuals. Artificial Life 17, 51-67.
62. Korzeniewski B (2011) Computer-aided analysis of biochemical mechanisms that increase metabolite and proton stability in the heart during severe hypoxia and generate post-ischemic PCr overshoot. J Physiol Sci 61, 349-361.
63. Korzeniewski B (2011) Computer-aided studies on the regulation of oxidative phosphorylation during work transitions. Prog Biophys Mol Biol 106, 274-285.
64. Edwards LM, Ashrafian H, Korzeniewski B (2011) In silico studies on the sensitivity of myocardial PCr/ATP to changes in mitochondrial enzyme activity and oxygen concentration. Mol BioSyst 7, 3335-3342.
65. Gellerich FN, Gizatullina Z, Trumbekaite S, Korzeniewski B, Gaynutdinov T, Seppet E, Vielhaber S, Heinze H-J, Striggow F (2012) Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Biochem J443, 747-755.
66. Zoladz JA, Grassi B, Majerczak J, Szkutnik Z, Korostyński M, Karasiński J, Kilarski W, Korzeniewski B (2013) Training-induced acceleration of O2 uptake on-kinetics precedes mitochondria biogenesis in humans. Exp Physiol 98, 883-898.
67. Korzeniewski B (2013) Formal similarities between cybernetic definition of life and cybernetic model of self-consciousness: universal definition/model of individual. Open J Philos 3 (2), 314-328.
68. Korzeniewski B, Zoladz JA (2013) Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics - and inversely. J Appl Physiol 115, 605-612.
69. Korzeniewski B (2013) Magic of language. Open J Philos 3 (4), 455-465.
70. Korzeniewski B (2014) Regulation of oxidative phosphorylation during work transitions results from its kinetic properties. J Appl Physiol 116, 83-94.
71. Korzeniewski B (2014) Philosophy of conceptual network. Open J Philosl 4 (4), 451-491.
72. Zoladz JA, Grassi B, Majerczak J, Szkutnik Z, Korostyński M, Grandys M, Jarmuszkiewicz W, Korzeniewski B (2014) Mechanisms responsible for the acceleration of pulmonary VO2 on-kinetics in humans after prolonged endurance training. Am J Physiol 307, R1101-R1114.
73. Korzeniewski B (2015) 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in skeletal muscle. PLoS One 10 (2): e0117145. doi: 10.1371/journal.pone.0117145.
74. Korzeniewski B, Zoladz JA (2015) Possible mechanisms underlying slow component of the VO2 on-kinetics in skeletal muscle. J Appl Physiol 118, 1240-1249.
75. Korzeniewski B (2015) Effect of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies. Biochim Biophys Acta (Bioenergetics) 1847, 1310-1319.
76. Korzeniewski B (2015) Mind-body problem: does complexity exist objectively? Open J Philos 5, 351-364.
77. Korzeniewski B, Rossiter HB (2015) Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans. J Physiol 593, 5255-5268.
78. Zoladz JA, Majerczak J, Grassi B, Szkutnik Z, Korostyński M, Go³da S, Grandys M, Jarmuszkiewicz W, Kilarski W, Karasiński J, Korzeniewski B (2016) Mechanisms of attenuation of pulmonary VO2 slow komponent in humans after prolonged endurance training. PLoS One doi.org/10.1371/journal.pone.0154135.
79. Korzeniewski B (2016) Freezing of reality: is flow of time real? Open J Philos 6, 256-264.
80. Korzeniewski B (2016) Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation. J Appl Physiol 121, 424-437.
81. Korzeniewski B (2017) Regulation of oxidative phosphorylation through each-step activation: evidences from computer modeling. Prog Biophys Mol Biol 125, 1-23.
82. Korzeniewski B (2017) Does matter matter? Should we mind the mind? -- Can philosophy be reduced to neurophysiology? Open J Philos 7, 265-328.
83. Korzeniewski B (2017) Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest. PLoS One e0185991. https://doi.org/10.1371
/journal.pone.0185991.
84. Korzeniewski B (2018) Regulation of oxidative phosphorylation is different in electrically- and cortically-stimulated skeletal muscle. PLoS One 13(4): e0195620. https://doi.org/10.1371/journal.pone.0195620.
85. Korzeniewski B, Rossiter HB, Zoladz JA (2018) Mechanisms underlying extremely fast muscle VO2 on-kinetics in humans. Phys Rep 6(16): e13808. https://doi.org/10.14814/phy2.13808.
86. Korzeniewski B (2018) Muscle VO2-power output nonlinearity in constant-power, step-incremental, and ramp-incremental exercise: magnitude and underlying mechanisms. Phys Rep 6(21), e13915. https://doi.org/10.14814/phy2.13915.
87. Korzeniewski B (2019) Conceptual-Network-Based Philosophy of Science. Open J Philos 9, 104-139.
88. Korzeniewski B (2019) Pi-induced muscle fatigue leads to near-hyperbolic power-duration dependence. Eur J Appl Physiol 119, 2201-2213. https://doi.org/10.1007/s00421-019-04204-8.
89. Korzeniewski B, Rossiter HB (2020) Exceeding a "critical" muscle Pi: implications for VO2 and metabolite slow compnents, muscle fatigue and power-duration relationship. Eur J Appl Physiol 120, 1609-1619. https://doi.org/10.1007/s00421-0209-04388-4.
90. Korzeniewski B (2020) Self-consciousness as a product of biological evolution. J Conscious Stud 27 (7-8), 50-76.
91. Korzeniewski B, Rossiter HB (2021) Factors determining training-induced changes in VO2max, critical power and VO2 on-kinetics in skeletal muscle. J Appl Physiol 130: 498-507.
92. Korzeniewski B (2021) Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies. J Appl Physiol 131: 768-777.
93. Korzeniewski B (2022) Effect of training on skeletal muscle bioenergetic system in patients with mitochondrial myopathies: A computational study. Resp Physiol Neurobiol 296: 103799.
94. Korzeniewski B (2022) VO2 on-kinetics-critical power relationschip: correlation but not direct causal link. Exerc Sport Scienc Rev 50: 104.
95. Korzeniewski B, Rossiter HB (2022) Skeletal muscle biochemical origin of exercise intensity domains and their relation to whole-body VO2 kinetics. Biosci Rep 42: BSR20220798.
96. Korzeniewski B (2023) Sensitivity of VO2max, critical power and VO2 on-kinetics in skeletal muscle. Resp Physiol Neurobiol 307: 103977.
97. Korzeniewski B (2023) VO2 (non-)linear increase in ramp-incremental exercise vs. VO2 slow component in constant-power exercise: Underlying mechanisms. Resp Physiol Neurobiol 311: 104023.
98. Korzeniewski B (2023) Mechanisms of slowed VO2 on-kinetics in second step of two-step-incremental exercise in skeletal muscle. Resp Physiol Neurobiol 314: 104084.
99. Korzeniewski B (2023) Training-induced increase in VO2max and critical power, and acceleration of VO2 on-kinetics result from attenuated Pi increase caused by elevated OXPHOS activity. Metabolites 13: 1111.
100. Korzeniewski B (2024) Pi -based biochemical mechanism of endurance-training-induced improvement of running performance in humans. Eur J Appl Physiol https://doi.org/10.1007/s00421-024-05560-w.
101. Korzeniewski B (2024) Biochemical origin of (near-)linear curvature constant (W')-VO2 slow component (VO2sc) and critical power (CP)-VO2 transition time (t0.63) relationship in skeletal muscle. Eur J Appl Physiol https://doi.org/10.1007/s00421-024-05612-1.